Sains Malaysiana 53(4)(2024): 747-757

http://doi.org/10.17576/jsm-2024-5304-02

 

Aquaponics vs Recirculating Aquaculture System: Assessing Productivity and Water Use Efficiency of Native Fish Species Empurau (Tor tambroides) and Jelawat (Leptobarbus hoevenii) Compared to Red Hybrid Tilapia

(Akuaponik vs Sistem Akuakultur Kitar Semula: Menilai Produktiviti dan Kecekapan Penggunaan Air Spesies Ikan Asli Empurau (Tor tambroides) dan Jelawat (Leptobarbus hoevenii) Berbanding Tilapia Hibrid Merah)

 

QI-SONG COLIN, KIU1, CHAIW-YEE, TEOH1,2,*& AI-LIN OOI1,2

 

1Department of Agriculture and Food Science, Faculty of Science, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900 Kampar, Perak, Malaysia

2Centre for Agriculture and Food Research, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900 Kampar, Perak, Malaysia

 

Received: 25 August 2023/Accepted: 26 February 2024

 

Abstract

A 3 × 2 (fish species × culture system) factorial design experiment was conducted to compare productivity of empurau (Tor tambroides), jelawat (Leptobarbus hoevenii) and red hybrid tilapia (Oreochromis sp., control) cultured in recirculating aquaculture system (RAS) and aquaponics system. Growth performance, feed conversion ratio (FCR) and survival rate of fish were evaluated, and water quality of all tanks throughout the 70-days experiment was determined. In the present study, FCR of tilapia, empurau and jelawat tended to be lower in aquaponics than RAS, while no significant differences (P>0.05) on weight gain (WG) and specific growth rate (SGR) between RAS and aquaponics for each fish species were observed. Although tilapia had significantly higher WG and SGR, and lower FCR compare to empurau and jelawat, the survival rate of empurau and jelawat were higher than tilapia, regardless of the culture system. Between empurau and jelawat, better growth performance was observed in aquaponics than in RAS. Significantly higher (p<0.05) ammonia and nitrite concentrations were shown in RAS tanks as compared to aquaponics tanks, regardless of the fish species. Jelawat might have wide range tolerance to ammonia as no mortality in both RAS and aquaponics, while tilapia and empurau had higher survival rate in aquaponics than RAS. In summary, aquaponics appears to be a viable approach to enrich variety and improve fish production in an environmentally responsible manner. Therefore, it is plausible to advocate for the use of aquaponics as a sustainable methods of farming native fish species in Malaysia.

 

Keywords: Aquaponics; native fish species; recirculating aquaculture system; red hybrid tilapia

 

Abstrak

Suatu kajian reka bentuk faktorial 3 × 2 (jenis ikan × sistem kultur) telah dijalankan untuk membanding produktiviti empurau (Tor tambroides), jelawat (Leptobarbus hoevenii) (jelawat), dan tilapia hibrid merah (Oreochromis sp., sebagai kawalan) yang dibiak dalam sistem akuakultur kitar semula (RAS) dan sistem akuaponik. Prestasi tumbesaran, nisbah penukaran makanan (FCR), dan kadar kemandirian ikan telah dinilai. Kualiti air dalam semua tangki sepanjang tempoh 70 hari juga telah ditentukan. Dalam kajian ini, FCR tilapia, empurau dan jelawat adalah lebih rendah dalam sistem akuaponik berbanding dengan RAS. Sementara itu, tiada perbezaan signifikan (P> 0.05) dalam penambahan berat (WG) dan kadar tumbesaran khusus (SGR) antara RAS dan akuaponik bagi setiap spesies ikan. Walaupun tilapia menunjukkan WG dan SGR yang lebih tinggi secara signifikan, FCR tilapia didapati   lebih rendah daripada empurau dan jelawat.  Kadar kemandirian empurau dan jelawat didapati adalah lebih tinggi daripada tilapia dalam kedua-dua sistem kultur. Antara ikan empurau dan jelawat, prestasi tumbesaran yang lebih baik diperhatikan dalam sistem akuaponik berbanding RAS. Kandungan ammonia dan nitrit yang lebih tinggi secara signifikan (p<0.05) telah diperhatikan dalam RAS berbanding sistem akuaponik, tanpa mengira jenis spesies ikan. Jelawat mungkin mempunyai julat toleransi ammonia yang tinggi kerana tiada kematian dalam kedua-dua sistem RAS dan akuaponik diperhatikan. Tilapia dan empurau mempunyai kadar kemandirian yang lebih tinggi dalam sistem akuaponik berbanding dengan RAS. Kesimpulannya, akuaponik merupakan sistem kultur yang berpotensi untuk mempelbagaikan ikan tempatan dan meningkatkan pengeluaran ikan dengan cara mesra alam. Oleh itu, penggunaan sistem akuaponik sebagai salah satu sistem penternakan yang mampan untuk pembiakan spesies ikan asli di Malaysia adalah amat digalakkan.

 

Kata kunci: Akuaponik; sistem akuakultur kitar semula; spesies ikan asli; tilapia hibrid merah

 

REFERENCES

Ahmad, A.K., Nur-Hazwani, M.N.R., Omar, S.A.S., Aweng, E.R. & Taweel, A. 2020.  Preliminary study on invasive fish species diffusion in selected Malaysian freshwater ecosystems. Pakistan Journal of Biological Sciences 23: 1374-1379.

Amirrudin, B.A. & Zakaria-Ismail, M. 2014. Additional native fish fauna of rivers and streams flowing into Temengor reservoir, Perak, Malaysia. Malayan Nature Journal 66(4): 407-419.

Atique, F., Lindholm-Lehto, P. & Pirhonen, J. 2022. Is aquaponics beneficial in terms of fish and plant growth and water quality in comparison to separate recirculating aquaculture and hydroponic systems? Water 14: 1447.

Bosma, R.H., Lacambra, L., Landstra, Y., Perini, C., Poulie, J., Schwaner, M.J. & Yin, Y. 2017. The financial feasibility of producing fish and vegetables through aquaponics. Aquacultural Engineering 78(Part B): 146-154.

Department of Fisheries (DOF). 2022. Annual Fisheries Statistics. https://www.dof.gov.my/en/resources/fisheries-statistics-i/

Dinar, A., Tieu, A. & Huynh, H. 2019. Water scarcity impacts on global food production. Global Food Security 23: 212-226. 

Duk, K., Pajdak, J., Terech-Majewska, E. & Szarek, J. 2017. Intracohort cannibalism and methods for its mitigation in cultured freshwater fish. Reviews in Fish Biology and Fisheries 27: 193-208.

Effendi, H., Wahyuningsih, S. & Wardiatno, Y. 2017. The use of nile tilapia (Oreochromis niloticus) cultivation wastewater for the production of romaine lettuce (Lactuca sativa L. var. longifolia) in water recirculation system. Applied Water Science 7: 3055-3063.

Estim, A., Shapawi, R., Shaleh, S.R.M., Saufie, S. & Mastafa, S. 2023. Decarbonizing aquatic food production through circular bioeconomy of aquaponics systems. Aquaculture Studies 23(4): AQUAST963.

Fischer, H., Romano, N., Jones, J., Howe, J., Renukdas, N. & Sinha, A.K. 2021. Comparing water quality/bacterial composition and productivity of largemouth bass Micropterus salmoides juveniles in a recirculating aquaculture system versus aquaponics as well as plant growth/mineral composition with or without media. Aquaculture 538: 736554.

Food and Agriculture Organization (FAO). 2020. The State of World Fisheries and Aquaculture 2020:  Sustainability in Action. Rome: FAO.

Food and Agriculture Organization (FAO). 2017. The Future of Food and Agriculture - Trends and Challenges. Rome: Food and Agriculture Organization of the United Nations.

Farahiyah, I.J., Abidin, Z., Ahmad, A.R. & Wong, H.K. 2017. Optimum protein requirement for the growth of Jelawat fish (Leptobarbus hoevenii). Malaysian Journal of Animal Science 20: 39-46.

Hargreaves, J.A. & Kucuk, S. 2001. Effects of diel un-ionized ammonia fluctuation on juvenile hybrid striped bass, channel catfish, and blue tilapia. Aquaculture 195: 163-181.

Junaid, A.A., Kamarudin, M.S., Junaid, Q.O., Edaroyati, W.P., Isyaka, M.S., Dauda, A.B., Umar, D.M., Igoli, J.O. & Amin, S.M.N. 2023. Nutrient uptake and recovery potentials of Ocimum basilicum and Corchorus olitorius in a polyculture aquaponics system. Scientific African 20: e01645.

Kamarudin, M.K.A., Idris, M. & Toriman, M.E. 2013. Analysis of Leptobarbus hoevenii in control environment at natural lakes. American Journal of Agricultural and Biological Sciences 8(2): 142-148.

Kaushik, S.J. 1998. Nutritional bioenergetics and estimation of waste production in non-salmonids. Aquatic Living Resources 11: 211-217.

Kim, J.H., Kang, Y.J. & Lee, K.M. 2022. Effects of nitrite exposure on the haematological properties, antioxidant and stress responses of juvenile hybrid groupers, Epinephelus lanceolatus ♂ × Epinephelus fuscoguttatus ♀. Antiodidants (Basel) 11(3): 545.

Lau, M.M.L., Lim, L.W.K., Chung, H.H. & Gan, H.M. 2023. The first draft genome assembly and data analysis of the Malaysian mahseer (Tor tambroides). Aquaculture and Fisheries 8: 481-491.

Lennard, W. & Goddek, S. 2019. Aquaponics: The basic. In Aquaponics Food Production Systems, edited by Goddek, S., Joyce, A., Kotzen, B. & Burnell, G.M. Springer. pp. 113-143.

Love, D.C., Fry, J.P., Li, X., Hill, E.S., Genello, L., Semmens, K. & Thompson, R.E. 2015. Commercial aquaponics production and profitability: Findings from an international survey. Aquaculture 435: 67-74.

Makhdom, S., Shekarabi, S.P.H. & Shamsaie Mehrgan, M. 2017. Biological nutrient recovery from culturing of pearl gourami (Trichogaster leerii) by cherry tomato (Solanum lycopersicum) in aquaponics system. Environmental Science and Pollution Research 24: 20634–20640.

Mchunu, N., Lagerwall, G. & Senzanje, A. 2018. Aquaponics in South Africa: Results of a national survey. Aquaculture Reports 12: 12-19.

Meena, L.L., Verma, A.K., Krishnani, K.K., Hittinahalli, C.M., Haridas, H. & John, V.C. 2023. Combined foliar application effect of iron and potassium on growth of okra and striped catfish using media bed based aquaponics. Aquaculture 569: 739398.

Misieng, J.D., Kamarudin, M.S. & Musa, M. 2011. Optimum dietary protein requirement of Malaysian mahseer (Tor tambroides). Pakistan Journal of Biological Sciences 14: 232-235.

Monsees, H., Kloas, W. & Wuertz, S. 2017. Decoupled systems on trial: Eliminating bottlenecks to improve aquaponics processes. PLoS ONE 12(9): e0183056.

Ng, W.K., Abdullah, N. & De Silva, S.S. 2008. The dietary protein requirement of the Malaysian mahseer, Tor tambroides (Bleeker), and the lack of protein-sparing action by dietary protein. Aquaculture 284: 201-206.

Ogah, S.I., Kamarudin, M.S., Nurul Amin, S. & Puteri Edaroyati, M.W. 2020. Biological filtration properties of selected herbs in an aquaponics system. Aquaculture Research 51: 1771-1779.

Oladimeji, S.A., Okomoda, V.T., Olufeagba, S.O., Solomon, S.G., Abol-Munafi, A.B., Alabi, K.I., Lkhwanuddin, M., Martins, C.O., Umaru, J. & Hassan, A. 2020. Aquaponics production of catfish and pumpkin: Comparison with conventional production systems. Food Science & Nutrition 8: 2307-2315.

Pattillo, D.A., Hager, J.V., Cline, D.J., Roy, L.A. & Hanson, T.R. 2022. System design and production practices of aquaponic stakeholders. PLoS ONE 17(4): e0266475.

Paust, L.O., Foss, A.K. & Imsland, A.K. 2011. Effects of chronic and periodic exposure to ammonia on growth, food conversion efficiency and blood physiology in juvenile Atlantic halibut (Hippoglossus hippoglossus L.). Aquaculture 315(3-4): 400-406.

Pinho, S.M., David, L.H., Garcia, F., Keesman, K.J., Portella, M.C. & Goddek, S. 2021. South American fish species suitable for aquaponics: A review. Aquacult. Int. 29: 1427-1449.

Rahmati, M., Hassan, M. & Abdi, R. 2022. Histomorphometric analysis of skin and stress indices of Nile tilapia (Oreochromis niloticus) exposed to different concentrations of ammonia. Iranlan Journal of Veterinary Medicine 16(3): 288-297.  

Saufie, S. 2020. Biomass production and nutritional quality of GIFT and green beans in aquaponics systems. PhD thesis, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia (Unpublished).

Setiadi, E., Widyastuti, Y.R. & Prihadi, T.H. 2018. Water quality, survival, and growth of Red Tilapia, Oreochromis niloticus cultured in aquaponics system. E3S Web of Conferences 47: 02006.

Suárez-Cáceres, G.P., Fernández-Cabanás, V.M., Lobillo-Eguíbar, J. & Perez-Urrestarazu, L. 2021. Consumers’ knowledge attitudes and willingness to pay for aquaponic products in Spain and Latin America. International Journal of Gastronomy and Food Science 24: 100350.

Sulaiman, M.A., Yusoff, F.M., Kamarudin, M.S., Nurul Amin, S.M. & Kawata, Y. 2022. Fruit wastes improved the growth and health of hybrid red tilapia Oreochromis sp. and Malaysian mahseer, Tor tambroides (Bleeker, 1854). Aquaculture Reports 24: 101177.

Tawaha, A.R., Wahab, P.E.M., Jaafar, H., Zuan, A.T.K. & Hassan, M.Z. 2021. Effects of fish stocking density on water quality, growth performance of tilapia and yield of butterhead lettuce grown in decoupled recirculation aquaponics systems. Journal of Ecological Engineering 22(1): 8-19.

Villarroel, M., Lama, G.C.M., Escobar-Álvarez, R. & Moratiel, R. 2022. Fish welfare in urban aquaponics: Effects of fertilizer for lettuce (Lactuca sativaL.) on some physiological stress indicators in Nile tilapia (Oreochromis niloticus L.). Water 14(6): 935.

Wang, S.X., Zhang, J.Y., Du, X.K., Liu, D.J., Liu, L.X. & Shen, X.H. 2022. Comparative analysis of the intestinal microbiota in goldfish and crucian carps between different aquaponics and traditional farming. Aquaculture Reports 25: 101240.

Yang, T. & Kim, H.J. 2020. Characterizing nutrient composition and accumulation in tomato-, basil-, and lettuce-based aquaponic and hydroponic systems. Water 12(5): 1259.

Yep, B. & Zheng, Y.B. 2019. Aquaponics trends and challenges - A review. Journal of Cleaner Production 228: 1586-1599.

 

*Corresponding author; email: cyteoh@utar.edu.my

 

 

 

 

 

 

 

 

 

 

 

 

previous